登陆注册
33021500000005

第5章 三大支柱,架起通天“金桥”

人类开拓空间的历程是艰辛的。要摆脱地球的引力,飞出“摇篮”,要经历千辛万苦的风雨沧桑。然而,一旦能冲出“摇篮”,就会产生一次认识上和实践上的巨大飞跃。从空间幅度看,以地球为中心,人类向宇宙空间拓展,发射人造卫星上天、登上地球自身的自然天体卫星——月球,这仅仅是人类在奔向宇宙漫长而久远的“金桥”上刚刚迈出了第一步。

近些年来,在全球范围内高技术群体蓬勃发展的大趋势下,航天技术更加活力倍增,各种新型航天器不断涌现。第三代、第四代高效率、多功能、全自动的航天器相继上天,载人航天器出现了崭新面貌,先后发射了“半永久性”空间站和自由往返天地之间的改进型航天飞机,实现了空间站与航天器的多头对接和宇航员创造在空间连续生活、工作超过一整年和在太空行走、劳作等新记录,为21世纪人类重返月球和飞往火星,提供了必要条件。在空间轨道上开展了发射、收回、修复、调整各种卫星、空间实验室、宇宙探测飞船和太空望远镜,并派出了飞往银河系寻找“外星人”的“地球特使”,同时开展了空间工业加工试验工作,为进一步拓展航天技术的空间工业应用打下了基础。航天技术在军事领域里的应用,有了突飞猛进的发展,航天兵器已悄悄进入外层空间,这给空间系统增加了安全保障,同时,也使和平的太空宇宙蒙上了一层恐怖的阴影。

令人欣喜的是航天技术的日益成熟,丰富的正反两方面经验不仅使航天事故率明显下降,而且完全按照人的科学意志行事的成功率大大提高,使举世瞩目的航天事业更加健康发展。这无疑与支撑航天技术稳步发展的三大支柱的日益坚强是分不开的。

航天技术之所以令人神往、惊叹,就由于它蕴含了现代高技术群体的集体力量。它是由运载器技术、航天器技术和航天发射与地面测控技术构成的高度综合性技术。它集中了近代力学、数学、物理学、天文学、大地测量学等基础理论,广泛应用了现代电子学、微电子学、无线电、自动化、真空、低温、高温、计算机、机械加工、冶金、化工等多学科高技术。它的发展又促进了现代天文学、空间物理学、地球物理学、生命科学、航天医学以及系统工程管理科学等一大批基础科学和应用科学的突破性发展。

1.“茁壮成长”的运载器技术

运载火箭技术的发展经历了漫长的历史。中国是发明火箭的国家。早在宋朝的宋太祖开宝三年(即公元970年),就有人开始用黑色火药装在纸筒内,点燃引线后用弓箭射向敌方,作为“火攻兵器”。到明朝初年,这种“军用火箭”已相当完善并广泛应用于战场,被称为“空中利器”,它的作用远远超过了刀、枪、剑、戟等冷兵器。到公元13世纪,中国的火箭技术传到了欧洲,也曾被列作军队的装备。但由于当时科学技术水平的限制,火箭技术一直发展很慢,以致被冷落下来,而其利用火箭喷射产生反作用力的原理却保留了下来。

第一次世界大战后,随着科学技术的进步,现代火箭技术也开始发展起来。1926年,美国哥达德发射了世界上第一支液体火箭。而真正将这种火箭技术应用于现代兵器,研制成进攻性导弹的却是德国人。第二次世界大战后期,德国法西斯集团为了挽救败局,加紧研制出一种所谓“复仇武器”1号和2号,即“V-1”和“V-2”号导弹,这就是在冯·布劳恩等人主持下研制并发射成功的世上第一种实用型“V-2”型导弹。它能将约1吨重的弹头发射到260公里远处。这种导弹的运载能力和射程,今天看来虽属微不足道的“小不点儿”,但它却是现代航天运载器的雏形。

第二次世界大战之后,前苏联和美国都在积极发展火箭导弹,美国甚至干脆把德国许多火箭专家运到美国为之研究在“V-2”基础上发展新型远程弹道式导弹技术。1957年8月,苏联发射成功世界上第一颗洲际弹道导弹,同年12月,美国也发射了自己的洲际弹道导弹。

导弹是在火箭基础上发展起来的。具体说,依靠火箭发动机推进的飞行器而未装备制导系统,依靠其弹道自由飞行的称为火箭。这种飞行器如装载的有效载荷是战斗部(各类型的炸药),则称为火箭武器;有效载荷不是战斗部而是某种仪器设备,则根据其任务不同而称其为“探空火箭”、“卫星运载火箭”等等。依靠火箭发动机推动的飞行器既装有战斗部,又装有制导系统的火箭,就称为导弹了。因此,一般说火箭与导弹是既有区别又有联系的一种装备。一颗火箭发动机推进的飞行器,装上制导系统,再装上航天器,就成为航天运载火箭;如装上战斗部,就是导弹。可见有效载荷一更换,它就“变种”了。这就是为什么1957年8月苏联发射世界上第一颗洲际导弹之后两个月,到1957年10月4日就又发射成功世界上第一颗人造地球卫星,这是因为把同一种洲际导弹头更换上人造卫星就发射上去了。

作为航天运载器,在目前技术条件下,要达到每秒7.9公里以上的飞行速度,需要很大的推力。因此,依靠单级火箭是无能为力的,只有依靠多级火箭,实行“接力推举”,运载器起飞后,第一级火箭完成任务、燃料也烧完了,就可脱离运载器同时起动第二级火箭,依次接力,使运载器速度不断增加,而重量又不断减轻。所以,运载火箭都是多级的,一般有两级、三级,还有四级的。

运载器的多级火箭大多使用液体推进剂,一般用酒精、煤油和液氧作燃料,先进的运载火箭已大多使用液氢和液氧高能推进剂;还有的“助推火箭”、“末级火箭”多使用固体推进剂实质上是一种高能火药做燃料,在燃爆中产生巨大推力。目前,运载火箭的重量多为数十吨至数百吨,个别特大型的达到数千吨。长度一般为数十米,个别大型的达100米;直径多为数米,个别大型的达10米。

随着70年代航天技术的新发展,在近地轨道上建立了空间站。这种空间站一般都在300~800公里高度的近地轨道上,地心引力已极其微弱,处于微重力状态,科学家们就设想,在发射未来飞行星际宇宙飞船时,就可以避开地球引力,不需要制造大功率运载火箭从地面上发射,而是可以先从地面发射“散装件”,然后在空间站上组装好,再从空间站上发射。事实上,从1981年4月12日美国航天飞机上天后,已多次从航天飞机上发射宇宙探测飞船和各种绕地人造卫星。这样就可以大大节省运载火箭的推力了。因为在航天飞机上或空间站上发射航天器,它们本身既在失重条件下,又已具备了每小时2.8万公里的速度,即已有相当于每秒7.78公里的速度,这当然就可以省力多了。

运载火箭作为航天器的运载工具,其根本动力就是来源于火箭发动机。它将能源转化为工作介质的动能,形成高速射流排出而产生推力。按使用的能源分类,通常分为化学火箭发动机、核火箭发动机、电火箭发动机和光子火箭发动机。

所谓“化学火箭发动机”,就是指其推进剂是化学材料,既是能源又是工作介质,它在燃烧室内进行放热反应,将化学能转化为热能,生成高温燃气,再将热能转化为高速气流动能,产生推力。按推进剂的物态分为液体火箭发动机、固体火箭发动机和混合火箭发动机。

所谓“核火箭发动机”,就是指其使用燃料能源,用氢作工作介质,经核反应或反射性衰变释放热能加热工作介质,经喷管高速排出,产生推力。

所谓“电火箭发动机”就是指电作能源,使用氢、氮、氩或铯、汞、铷、锂等碱金属蒸气作工作介质,用电能加速工作介质,形成高速射流排出,产生推力。

科学家们还设想,将来可用一种“光子火箭”发动机,所谓“光子火箭”发动机就是使光子流以光的速度从火箭喷管排出,火箭就可以接近光速的速度飞行。但是,目前如何产生光子流仍未研究出来,要产生光子流就必须研制出比现代核反应发动机效率更高的核反应装置,同时还要解决光子流定向喷射问题。因此,这将是21世纪科学家的任务了。

2.营造太空载体的航天器技术

人类要奔向宇宙空间,在那里长期活动,必须有一套相适应的活动“基地”。这个“基地”的大小,主要根据人们的需要和特殊要求,用以满足太空活动时的“船”或“车”,这就是经过专门设计的航天器。这是征服宇宙的必要条件和惟一工具,在现代航天技术领域中居于重要地位。没有航天器,就没有航天事业可言,航天器在发展科学技术,开发空间经济,增强综合国力和加强军事实力中发挥着越来越大的作用,对于一个国家的生存发展、抢占战略制高点,具有难以估量的重大战略意义。因此,不断研究发展航天器技术,已成为各国的重点科研项目和竭力追求的战略目标。

从20世纪50年代后期至今的40年来,世界航天器技术由创立到发展,出现了根本性的变化。品种越来越多、用途越来越广、面貌越来越新、质量越来越高。

航天器,按运行轨道分为两大类。第一类是环绕地球运行的航天器,包括人造地球卫星、卫星式载人飞船、航天站、航天飞机等;第二类是完全脱离地球引力飞往月球或其他行星,以至星际间空间运行的航天器,一般称为登月飞船、空间探测器等。航天器又分为载人和无人两类。载人飞船一般能在空间作短暂飞行,然后可自行返回地面。而载人航天站则可容纳多人在里面生活和工作,且可在轨道上长期送行。载人航天器中能集运载、航行和返回于一身的是航天飞机。航天器在轨道上或空间航行,能在超高空、强辐射、持续失重和温度剧烈变化的特殊环境中活动,是因为航天器中装备着一整套操纵、控制、能源、通信、计算、返回和生命保障系统,并可根据不同的任务装备专用系统。世界航天器技术正向更加严密、科学、实用、可靠的方向,以更快的速度迅速发展着。

航天器的运行原理是什么呢?航天器和自然天体一样,都要按一定的力学定律运行。人类无力改变自然天体的运行轨迹;而人造航天器则可根据发射目的,人们可以利用航天器上的动力系统和控制系统不断改变其航行轨迹。这主要由以下技术参数决定:

(1)速度与高度

航天器在获得一定速度时(一般要达到第一宇宙速度以下),并达到一定高度(离地面125公里以上)时,开始进入“近地轨道区”绕地球做匀速运动,此时的“轨道”有两种几何形式,一种是圆形轨道,即以地球为中心,航天器的飞行轨迹高度基本不变,是个均值。此时的速度要保持在每秒7.9公里。另一种是椭圆形轨道,即当航天器运行速度大于第一宇宙速度而又小于第二宇宙速度时,就会出现椭圆形轨道。这时,地球处于椭圆的一个焦点上,航天器围绕地球旋转时,它们之间的距离是个变量,离地球最近的一点称“近地点高度”,离地球最远的一点称“远地点高度”。在绕地轨道上运行的航天器,其运行寿命和用途与轨道高度有直接关系。高度高,航天器的空间运行寿命就长些,反之,则寿命短些。如用于照相侦察,则不宜飞得太高,而如用于通信、转播、传输信息,则可运行在高度很高的“定点同步静止轨道”(即:在35786公里高度上作正圆形绕地球轨道飞行,其运行速度和地球自转速度一样。因此好像是静止定点地“挂在地球某地上空,故称之)。因此,航天器的高度和速度要根据实际来选择。

至于飞出地球运转轨道,已等于或大于第二宇宙速度时的航天器,其高度和速度对轨道的影响,则不是圆与非圆的问题,而是另一种空间轨道的问题了。

(2)运行周期

通常这是专指航天器绕地球运行一圈的时间,其周期长短与轨道高度有关,轨道高,绕圈大,运行时间就长;反之,则短。但周期也不能太短,最短也不能少于84分钟,因为再短就说明轨道高度离地面太近了,低于125公里时,就会使航天器受到微薄空气的阻力而慢慢下降高度,最后掉回地球上来。掌握了航天器运行轨道和运行周期,就可以计算出该航天器经过某地上空的时间和观察视场。

(3)轨道倾角

这是指航天器运行轨道平面与地球赤道平面的夹角。轨道倾角的大小,决定航天器对地球表面覆盖区的大小。倾角越大,覆盖区越大;反之,则越小。航天器的运行轨道分为三种:一是“赤道轨道”,即航天器轨道平面与赤道平面重合,倾角为零,航天器始终在赤道上空绕地飞行;二是“极地轨道”,即航天器轨道平面与赤道平面垂直,倾角为90度,航天器始终飞越地球南北两极;三是“倾斜轨道”,即航天器轨道平面与赤道平面夹角既不为零,也不为90度,而是航天器在这0~90度之间的某一倾角飞行。

航天器运行轨道倾角不同,主要是根据该航天器的功用需要而确定。航天器由地面发射时,倾角越大,所需运载火箭的推力也要相应大些,这是由于航天器上升入轨过程中,能“借用”地球自转的转动惯量大小不同而形成的结果。

(4)常用轨道

根据各种航天器的用途不同,各自选择运行轨道也不同,其中有三种轨道最受欢迎。

一是“地球同步轨道”,又称“静止轨道”。这是“赤道轨道”的一种,属圆形轨道,高度为35786公里,运行周期为23小时56分4秒,与地球自转一周的时间完全相同。航天器在此轨道上处于与地球相对静止状态。这是一条地面跟踪简单,能24小时连续工作,适用于通信、广播电视、气象侦察和军事预警等人造卫星的理想轨道,因此,它成为各国争相使用的一条“空中林荫大道”,纷纷向此大道上发射卫星,大有川流不息,不堪拥挤之感。为防止发生互相碰撞而引起国际纠纷,国际卫星组织机构(有122个国家都参加的)规定,凡向此轨道发射通信卫星,必须事先登记,取得许可证。

二是“极地轨道”,其突出特点是航天器轨迹可覆盖全球,航天器在此轨道上可飞越地球上任何地区,是导航、资源勘察、气象探测等类卫星的常用轨道。

三是“太阳同步轨道”,是“倾斜轨道”的一种,是指航天器运行轨道平面绕地轴的旋转方向和周期,与地球绕太阳的公转方向和周期相同。其突出特点是航天器运行轨道平面与太阳照射方向始终不变。因此,当航天器沿此轨道运行,每次通过同一纬度的地面目标上空时,能保持对同一地方、在同一运行方向上,具有相同的光照条件,这对于空中对比观测,合理部署和充分利用航天器上太阳能电池阵列都有独特优点。一些国家的近地军事侦察卫星、地球资源勘探卫星和军事气象卫星大多数都采用这条轨道。

(5)经济可靠的应变行程

航天器在空间运行过程中的运行轨道,是可以改变的,也就是航天器利用自身携带的推进剂启动自动的动力装置和航天器姿态控制装置改变自身的运行轨道,可以加速,也可掣动减速,还可改变运行方向和姿态角度。改变其运行轨道,这在航天技术的术语中称作“轨道机动”,或称“轨道转移”。

通常,航天器的轨道机动包括改变轨道平面和轨道形状两种情况。即:使航天器轨道平面从一个位置转移到一个新的轨道平面位置继续运行;航天器轨道形状从某一圆度改变为新的圆度。这两种转移可单独进行,也可同步进行。

为了节省航天器在“轨道机动”过程中耗费的能量,70年代以后,人们大量使用“引力跳板技术”。因为这种技术会大大节省航天器探测路程的飞行时间。所以行星际间的航天器轨道机动,除利用自身动力系统外,现在主要“借用”天体自身的引力来改变航天器运行轨道,即所谓“借力机动技术”或称“引力跳板技术”,形成“跳板式轨道”,则是更为重要的太阳系内行星际间航天活动的技术手段了。

3.推上太空的发射与测控技术

航天器依靠运载器的推动发射上天,在空间航行也需人在地面监测和控制。因此,航天发射场地面监控网及其主要技术装备,是现代航天技术中三大支柱之一,是航天系统工程中重要组成部分,是发射和控制运载器与航天器必备的重要条件。

近30多年来,世界航天事业中,航天发射和地面监控技术同运载器技术和航天器技术齐头并进,相辅相成,取得了突飞猛进的发展,保障和促进了整个航天技术的发展。

(1)航天发射场

所谓“发射场”,就是把航天器发射上天的场地。这是运载火箭进入茫茫宇宙之前在地面的最后一个停靠站。它是发射航天器的特定区域,主要包括发射区、测试区、指挥控制中心、综合测试设备(计算中心、航路测控站和测量船)、勤务保障设施(生产液氢、液氧、氮等工厂、各种辅助仓库、通信、气象、水电供应、计量等部分),以及各种行政后勤保障部门等。场区的条件要求很严格,它的场址选择、发射手段、地面指挥控制设备、后勤保障设施等,都是经过精心选择、精心筹措,并要确保准确无误、安全可靠的。

在发射场址选择上,一般要具备以下五个基本条件:一是根据本国地理条件和发射航天器的特殊需要,一般要选在纬度较低的地区,尽可能接近赤道,且人烟稀疏的山区、戈壁或海边,以防发生事故;二是要找适宜气候条件,大气温差尽可能小,包括一年四季温差尽可能冬暖夏凉,昼夜温差也不大,且每天日照时数尽可能长些,每年日照天数多些,保持晴空万里,天高云淡;三是发射上天的运载火箭运行的东南方向上有较多的易于布设测探网的地域或海岛;四是尽可能便于运输的地域,交通线尽可能易于开辟;五是尽可能多功能使用,即军用和民用兼容,既可用来发射航天运载火箭,又可进行导弹武器试验。

当然,这五个基本条件同时都具备不容易,但至少要优先保证纬度尽可能低些、气候尽可能好些这两条。

随着航天事业的发展,有条件的国家都在努力建设自己的发射场,或与别国合作建设。据统计,到1990年底,全世界已公开的航天发射场共有17个。

近几十年来,全世界有4200多次的航天器成功发射都是在这些神秘的场区进行的,人类走上探索宇宙的“金桥”就是从这里开始迈出第一步的。近两三年来这些严守秘密的航天器始发站开始逐步揭开一角,为世人所见,大开了眼界。

(2)宇航测控

航天器进入茫茫太空,运转速度快,轨道复杂,航天器在空间航行,必须与地面保持密切的联系,由地面对航天器进行跟踪、遥测、遥控和通信。测控系统由分布在全球各地的台、站、船等组成。这些地面设备具有非常完备、高级的电子设备,是航天技术中的重要组成部分。

第一步,从升空到运行的测控。航天器随运载火箭离开发射台之后,很快进入看不见、摸不着的宇宙太空,要跟踪和测量航天器的飞行路线,掌握其工作状态,预报其运行轨道,以及改变其运行轨道,就只能通过无线电波等手段,同时建立实时的信息联系。

地面测控网要按照航天器的飞行轨道和任务,比如:入轨点、机动变轨段、回收段等,在地面上布置以控制计算中心为核心的多处测控站,在海上布置以测量指挥船为核心的测控船队和岛屿测控点。它的主要任务就是:一要接收记录遥测信息,并向测控计算中心传送;二要在跟踪测轨获得初轨的基础上进行计算,以作出航天器运行轨迹的全球性预报;三要控制计算中心综合并计算各测控站的数据、实时显示航天器的各种工作状态;四要通过地面遥控系统,向航天器及时发出遥控指令,对航天器进行遥控。

为保障长期执行航天测控任务,除少数测控航队可临时机动派遣外,绝大多数测控站是常设的。比如,我国航天测控网的卫星测控中心设在陕西渭南,辐射到全国各地,在各地建立了20多个航天器(当前还是人造地球卫星)观测站,形成了广阔而密集的测控网络。地面测控网规模宏大、系统综合性强,要能对航天器“抓得住、测得准、报得及时、指控得力”,必须建立一个综合控制的统一的测控网。这种“综合测控技术”在60年代后期我国首先采用,取得优异成效,在“计算机录取和交换数据”、“四机联网指令链”和“系统仿真模拟”等应用技术方面,对解决航天器进入太空、返回地面、同步定点问题发挥了突出作用。从80年代中期开始,我国西安卫星测控中心开发出了利用一套测控网,连续8年同时对多颗不同类型的在轨运行的长寿命卫星实施“一网管多星”的独特模式,闯出一条科学、高效、经济的卫星测控管理之路,使这一测控技术达到世界先进水平。

第二步,从绕地到定点的指挥。通信卫星,通常设在地球同步静止轨道上,故也称地球同步卫星或静止卫星。它定点于赤道上空35786公里的轨道上,比测控近地轨道上的航天器要复杂得多。在保证中、低轨道测控网的基础上,必须增加大功率、高灵敏度、超远距离的测控设备,才能适应静止轨道航天器的测探要求。为实现这种超远距的测控任务,通常要采取和解决下述三类措施的问题。

——分散测控系统

这是采用微波跟踪测量设备,加上超短波遥测、遥控等设备组成测控网,而这种分散测控系统的功能系统“各自为政”,互相独立。这种系统单个设备功能全,精度相对高,但协调统一难度大、耗资多,整体效益并不很高。

——微波统一系统

即将多种功能统一在一套设备上,采用微波频段进行协调。由一个天线、一套收发设备组成的微波统一系统,具有跟踪测轨、遥测、遥控、数传的能力,即“四合一系统”。

——同步控制系统

航天器在进入同步轨道静止定点过程中,要经过变轨和轨道调整等多种程序。航天器在进入转移轨道后,测控系统一要测量航天器与运载火箭分离后的卫星轨道参数,二要遥测监视其工作情况和姿态、转速等参数,三要对建立点火姿态及点火控制等进行控制。

当航天器进入准静止轨道后,测控系统一要对其即将越出地面测控站作用范围前测出准静止轨道参数;二要对其进行遥测和遥控,使其建立轨道法向姿态;三要进行轨道调整控制。首先使其向预定轨道位置漂移。当其到达预定位置后,进行轨道调整。当进入同步定点轨道时,使其停止漂移,并使其运行周期与地球自动周期相近(约差4分钟)。

当航天器进入静止轨道定点正常运行时,测控系统转入常规测控,一要定期测轨,及时调整其偏离值;二要测量其工作状态;三要对其姿态及转速进行测量和调整;四要对消旋定向天线对地定向的情况进行测量。

为了保证这些测控任务的完成,要派出远测量船队,对超出国土以外的航天器运行过程进行测控。

有的地球静止卫星采取自旋姿态稳定办法对其轨行修正和姿态修正时,要使卫星上的小发动机的喷气与卫星自旋同步。这种“同步控制”可有几种方式。比较先进的是采用“星地间测控大回路的”的同步控制,即由遥测测出卫星自旋的周期和瞬时相位以及其他姿态参数,由遥控系统发出遥控指令,使卫星小发动机的喷气脉冲正好在卫星自旋到相应的相位上。这对测控回路的传输及调制、解调方式的要求十分严格。只有这样,才能保证同步控制的时间精度达到小于1毫秒。

因此,确保航天器到达地球同步轨道,不仅要有一大批测控台、站、船队的相互配合、协同行动,而且要有大量计算机、通信设备来予以保证。通常要有一个拥有多台计算机的测控中心、两个精度高、作用距离远的微波统一系统和三艘远洋测量船。此外,还要有设置在广大国土地面上的雷达站、遥测站、光学跟踪站等众多的台站协同动作,各司其职,同步行动。

第三步,从脱轨到返回的召唤。要使航天器发射上天,固然很不容易;但要使其在茫茫太空运行中,按人的意志返回地面指定地点(或海面溅落),同样相当困难。截止到1992年,世界上也才只有三个国家具有航天器回收技术能力,我们中国就是其中之一。

对返回式航天器的测控,不仅对航天器本身要有特殊的要求,比如接收测控指令的灵敏度、制动姿态转变的控制系统,以及再入大气层时的能够忍耐1000℃以上的高温防护措施和软着陆或溅落装置;在载人航天器上还要有人工紧急操纵系统和救生逃逸系统等,这些都大大不同于非回收式航天器的技术要求,而且对地面测控系统技术也提出了更高的特殊要求。它不但要能进行发射、升空、运动等轨迹跟踪测控,而且要能对其脱轨、再入、回收等准确无误地进行测控。

返回式航天器测控网负有重要的历史使命。其主要任务:一是对航天器进行跟踪观测,取得数据;二是进行数据处理,计算初轨并对初轨进行修正,计算精轨,选择回收圈,预报发出回收调姿、分离指令的时间和粗略落点;三是接收和处理遥测数据,并对其中重要参数实时处理;四是对航天器发出遥控指令,以控制航天器上对应的设备及时进行开(关)机,同时还要校准航天器上的计时装置;五是根据轨道寿命和遥测参数,作出判断是否需要紧急回收的决定;六是在航天器回收段,要完成再入控制、跟踪、观测,再入弹道计算、安全判断和安全控制等任务。

综上所述,我们可以看到,从航天器发射升空、地球静止轨道同步定点,到返回式航天器返回成功,都与地面测控系统技术的不断提高有着密切关系。

此时此刻,在地球人的头顶上空,穿梭飞行着大大小小的卫星、飞船、航天飞机、宇宙空间站等各类宇航飞行器。是科学技术的进步,让人类有了冲出地球引力的条件,有了太空漫步旅行的工具,有了与外星生命对话的机会,有了造访其他星球的可能。当日益先进的宇航工具更多的出现时,等于人类已经握有了开启通天之门的钥匙。

同类推荐
  • 认识海洋系列丛书:生活在海洋中的动物

    认识海洋系列丛书:生活在海洋中的动物

    以海洋、海洋中的植物、动物、食物链、矿藏、海洋中的科学以及人类在海洋中发生过的战争为主要加工、编辑素材。将海洋的神秘、浩瀚以及与人类的关系进行梳理、叙述。把最大的生物——鲸鱼、最凶猛的海洋动物——鲨鱼、美丽的珊瑚、大洋底部的锰结核,等等,一一呈现给读者。各单本按二级学科、三级学科进行有逻辑的组合排列。文字浅显、活泼、生动。
  • 世界古墓之谜总集

    世界古墓之谜总集

    神秘的木乃伊、雄伟金字塔、古墓尸体、墓地神奇魔力……在一切人类未解之谜及科学探索中,古墓之谜最充满神秘色彩。在不见天日的黑暗地底,在人迹罕至的密林深处,在难以涉足的险峻之地,沉睡着一座座古墓。它们之中有的金碧辉煌,有的机关重重……
  • 探索未知-人类生活环境与物理

    探索未知-人类生活环境与物理

    探索未知,追求新知,创造未来。本丛书包括:奇特的地理现象、遗传简介、生活物理现象解读、奥妙无穷的海洋、认识微生物、数学经典题、垃圾与环境、湛蓝浩瀚四大洋、生物的行为、漫谈电化学、数学古堡探险、中国的世界文化遗产、中国古代物理知识、中国三大三角洲、中国的地理风情、多姿的中国地形、认识少数民族医学、悠悠的中国河流等书籍。
  • 海洋动物探索大百科

    海洋动物探索大百科

    本书内容分为鱼类,两栖、甲壳、头足、贝类,哺乳动物类,腔肠、棘皮动物、浮游生物类,海洋蠕虫五种类型,将知识的趣味性、实用性贯穿始终,不仅可以满足广大读者对知识的需求,更能够激发读者探索大自然的兴趣。
  • 动手做实验丛书--物理实验器材巧用

    动手做实验丛书--物理实验器材巧用

    该系列丛书主要介绍动手做实验,本书详细讲解了物理实验器材巧用。
热门推荐
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 顺旗自然

    顺旗自然

    徐烨然有一个小秘密,就算她闺蜜都不知道的秘密,高中那年她其实有一个喜欢的人,但是那个喜欢的人喜欢她闺蜜罢了,其实她很想跟她闺蜜说,但是在她发现他喜欢她闺蜜的时候,就退缩了,只因为她不想失去她人生中最重要的朋友...
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 冷王的冰冷王妃

    冷王的冰冷王妃

    穿着黄色衣服的女人说:“你们只要把冷紫月给杀了,我就给你们很多很多的钱,很多很多的女人。”身后的男人全都两眼发光,他们异口同声的说:“杀啊!!!”冷紫月冷冷的说:“不自量力”所有人都一一的冲了过来冷紫月都一一给打死了,几百号人全部死的死、伤的伤。他们一脸惊恐的样子,冷紫月看着他们惊恐的样子觉得好笑,明明就是你们来惹我的,现在是几个意思,我从来人不犯我我不犯人,人诺犯我我必人。
  • 逆天不归

    逆天不归

    何某人在路边捡了一个贵重物品,以为苍天有眼人品爆表!结果尼玛为什么出现一个杀手!然后就丢了一条命会不会太坑爹???醒来居然穿!越!了!表示小心脏受不了打击!更重要的是在这个魔法世界自己居然什么都不会!男主角的金手指呢!!!不过好在这个世界美女多。。。
  • 日歌

    日歌

    她,是堂堂白氏集团的千金大小姐,却被世仇所扰,白氏一夜之间兵败如山倒,父母也在火灾中身亡,想要带领家族崛起的哥哥也因病过世。他,一心想要找回当年的青梅竹马,为了得到父亲手中的权利,蒙骗了此时早已崛起了的白氏的小妹妹,得到了白氏的股份以及老爷的信赖。却发现白家小妹妹正是他寻找了多年的青梅竹马。这是一个巧合,还是刻意?她,日,他,歌,爱与恨,抉择就在一念之间。
  • 中美银行的较量:中美银行经营管理比较

    中美银行的较量:中美银行经营管理比较

    本书讲述了中国银行业最近几年发展势头喜人,规模已能与华尔街巨人比肩,创造的利润甚至还要远超过它们。尽管美国银行业的发展模式并非完全适合于中国,但不可否认,中国的银行在体制、管理、产品、人才等方面仍然需要向华尔街学习,而最终目的则是在国际金融舞台上搭建属于中国的“华尔街”。
  • tfboys之爱与使命

    tfboys之爱与使命

    她无意间到了《萌学园》,无意间见到了偶像《tfboys》,无意间见到了好久不见得好朋友!他(她)们,经过了无数次的各种经历后终于在一起了!
  • 三生不负:帝君请自重

    三生不负:帝君请自重

    这一生,她拼死拼活为他干了三件事。第一件事,为替他救回未婚妻,她逆天行事惨遭天谴。第二件事,为帮他手刃仇人,她犯下弥天大罪修为尽废。第三件事,为帮他取回续命之药,她只身闯蛮荒差点魂飞魄散。这满身的伤,万劫不复的痛,若问她悔么?她定说不悔。她悔的只是从头至尾都没有告诉过他一句,我喜欢你。三生三世,浮屠殆尽。若问来生,他定不负,相思入骨。
  • 修仙灾难

    修仙灾难

    穿越之后是开车前往德国骨科,还是调头驶向新日暮里,这是个问题不过无论如何,人的一生应当这样度过当他回首往事时不因没有恋爱而悔恨也不因没有穿越过而羞愧更不会因为系统抽风而震惊这样,在他临死的时候他能够说:这一切,都tm是被逼的!